Incomplete Block Designs Growth Chamber Example

Objective:

Determine the effect of soil temperature on emergence of *Miscanthus* shoots.

Treatments:

Only two growth chambers were available so it was necessary to u	
an incomplete block design.	usc

Boersma and Heaton, GCB Bioenergy 4:680-687.

Incomplete Block Designs Growth Chamber Example

Only two temperature treatments could be tested during a growth period. Treatments were applied to chambers so that every temperature occurred once with every other temperature in the same period so t(t-1)/2 = 6 periods were required. Each treatment was \therefore replicated (t-1) = 3 times.

Incomplete Block Designs Growth Chamber Example

		<u> </u>
Source	df	SS
Total	n – 1	$\sum (y_{ij} - \overline{y}_{})^2$
Incomplete Blocks	b – 1	$k\sum (\overline{y}_{.j} - \overline{y}_{})^2$
Treatments (adjusted)	t - 1	$\frac{k\sum_{i}Q_{i}^{2}}{\lambda t}$
Error	n - t - b + 1	TotSS - BSS -TrtSS

 $Q_i = y_{i.} - (B_i / k)$

 B_i = sum of block totals that include the treatment

k = # experimental units/block

 λ = associate class

Incomplete Block Designs Growth Chamber Example

Source	df	SS	MS	F
Total	11	10767		
Period	5	3767	753.33	
Temperature (adjusted)	3	5900	1966.67	5.36
Error	3	1100	366.67	

Incomplete Block Designs Growth Chamber Example

SAS Code:

```
proc mixed;
  class Per Temp;
  model Emerg = Per Temp;
  lsmeans Temp;
  contrast 'Temp linear' Temp -3 -1 1 3;
  contrast 'Temp quad' Temp 1 -1 -1 1;
run;
```

Incomplete Block Designs Growth Chamber Example

SAS Output:

Type 3 Tests of Fixed Effects								
Effect Num DF Den DF F Value Pr > F								
Per	5	3	1.44	0.4069				
Temp	3	3	5.36	0.1006				

Contrasts								
Label	Num DF	Den DF	F Value	Pr > F				
Temp linear	1	3	15.71	0.0287				
Temp quad	1	3	0.14	0.7364				

Incomplete Block Designs

Growth Chamber Example Adjusting Means for Block Effects

$$\overline{Y}_i = \overline{Y}_i + \frac{kQ_i}{\lambda t} = 51.67 + \frac{2Q_i}{4}$$

	Treatment						
Treatment	Means	Q	Means				
15	13.33	-80	11.67				
20	53.33	-10	46. 67				
25	60	20	61. 67				
30	80	70	86. 67				

Incomplete Block Designs

Growth Chamber Example
Standard Error of a Difference

$$S_{\overline{d}} = \sqrt{\frac{2kMSE}{\lambda t}} = \sqrt{\frac{2(2)366.67}{1(4)}} = 19.15$$

Incomplete Block Designs Growth Chamber Example

Lattice Designs

Balanced 3 x 3 x 4 Lattice

k = number of treatments / incomplete block

s = k = number of incomplete blocks / rep

 $t = sk = k^2 = number of treatments / rep$

r = k + 1

Lattice Designs Balanced Sizes

t	9	16	25	49	64	81
k	3	4	5	7	8	9
r	4	5	6	8	9	10

s = number of incomplete blocks / rep

k = number of treatments / block

Lattice Designs Linear Additive Model

$$Y_{ijk} = \mu + R_i + B_{(i)j} + T_k + \varepsilon_{ijk}$$

Where:

 Y_{iik} = variable to be analyzed from i^{th} rep and j^{th} block

 μ = overall mean

 R_i = effect of the ith rep

 $B_{(i)j}$ = effect of the j^{th} block within the i^{th} rep

 T_k = effect of the k^{th} treatment

Lattice Designs Expected Mean Squares

Source	EMS
R _i	$\sigma_{\varepsilon}^2 + k\sigma_B^2 + t\sigma_R^2$
$B_{(i)j}$	$\sigma_{\varepsilon}^2 + kr\sigma_B^2$
T _k (unadj.)	$\sigma_{\varepsilon}^2 + [k/k+1]\sigma_B^2 + r\Phi T$
T _K (adj.)	$σ_ε^2 + rΦT$
ε _{ijk}	σ^2_{ϵ}

Lattice Designs ANOVA

Source	df	SS
Replicates	r – 1	$sk\sum (\overline{y}_{i}-\overline{y}_{})^2$
Blocks / reps	r(s - 1)	$k\sum_{ij.}(\overline{y}_{ij.}-\overline{y}_{})^2$
Treatments (adjusted for blocks)	t - 1	$\frac{k\sum_{i}Q_{i}^{2}}{\lambda t}$
Error	N - t - rs + 1	TotSS - RSS - BSS -TSS

$$Q_i = y_{..k} - (B_k / k)$$

 B_k = sum of block totals that include the k^{th} treatment

Lattice Designs SAS Analysis

```
proc mixed;
  class rep blk trt;
  model yld = trt;
  random rep blk(rep);
  lsmeans trt / pdiff;
run;
```

Lattice Designs Partially Balanced

Types:

Simple Lattice – 2 reps Triple Lattice – 3 reps Quadruple Lattice – 4 reps

Lattice Designs Partially Balanced

Constraints:

k = number of treatments / incomplete block

s = k = number of incomplete blocks / rep

 $t = sk = k^2 = number of treatments / rep$

r = 2, 3, or 4 = number of replicates

Lattice Designs 5 x 5 Simple Lattice

Block	Rep		1		
1	1	2	3	4	5
2	6	7	8	9	10
3	11	12	13	14	15
4	16	17	18	19	20
5	21	22	23	24	25

1	6	11	16	21
2	7	12	17	22
3	8	13	18	23
4	9	14	19	24
5	10	15	20	25

Lattice Designs Partially Balanced

Associate Classes:

- λ = 0 for treatments that never occur together in an incomplete block
- λ = 1 for treatments that occur together once in an incomplete block

Lattice Designs Partially Balanced

Size		# Treatments									
Simple	9	16	25	36	49	64	81	100	121	144	169
Triple	9	16	25	36	49	64	81	100	121	144	169
Quadruple	9	16	25	36	49	64	81	100	121	144	169

 $t = sk = k^2 = number of treatments / rep$

k = number of treatments / incomplete block

s = k = number of incomplete blocks / rep

Lattice Designs Rectangular Lattice

Constraints:

k = s - 1 = number of treatments / incomplete block

s = k + 1 = number of incomplete blocks / rep

t = sk = number of treatments / rep

r = 2, or 3 = number of replicates

Simple rectangular lattice r = 2

Triple rectangular lattice r = 3

Lattice Designs

3 x 4 x 3 Rectangular Lattice

Block	Rep	1	
1	1	2	3
2	4	5	6
3	7	8	9
4	10	11	12

8	11
5	12
6	9
7	10
	5

1	5	7
2	9	10
3	4	11
6	8	12

3

Lattice Designs Rectangle Sizes

t	12	20	30	42	56	72	90
S	4	5	6	7	8	9	10
k	3	4	5	6	7	8	9

s = number of incomplete blocks / rep

k = number of treatments / block

Lattice Designs Available Treatment Sizes

t	9	12	16	20	25	30	36	42	49	56	64	72	81	90	100	144
s	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	12
k	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	12

s = number of incomplete blocks / rep

k = number of treatments / block

Generalized Lattice Designs Alpha Lattice Designs

Constraints:

k = number of treatments / incomplete block

s = number of incomplete blocks / rep

t = sk = number of treatments / rep

r = 2, 3, or 4 = number of replicates

Generalized Lattice Designs Some Potential Alpha Designs

t	15	18	21	24	28	32	40	50	88	120	130	165
S	5	6	7	6	7	8	8	10	11	12	13	15
k	3	3	3	4	4	4	5	5	8	10	10	11

s = number of incomplete blocks / rep

k = number of treatments / block

Lattice Designs Homework Problem

```
proc mixed data=a method=type3;
  class group block treatmnt;
  model yield = treatmnt;
  random group block(group);
  estimate '1 vs. 2' treatmnt 1 -1;
  estimate '1 vs. 7' treatmnt 1 0 0 0 0 0 -1;
  lsmeans treatmnt;
run;
```

Type 3 Analysis of Variance									
Source	DF	Sum of Squares	Mean Square	F	Pr > F				
				Value					
Treatmnt	24	711.120000	29.630000	1.97	0.0824				
Group	1	212.180000	212.180000	1.90					
Block(Group)	8	501.840000	62.730000	4.59					
Residual	16	218.480000	13.655000						

Lattice Designs Homework Problem

Covariance Parameter Estimates

Cov ParmEstimateGroup4.0150Block(Group)19.6300Residual13.6550

Estimates					
Label	Estimate	Standard Error	DF	t Value	Pr > t
1 vs. 2	2.0952	3.9739	16	0.53	0.6052
1 vs. 7	9.9933	4.2342	16	2.36	0.0313